Cognitive Reserve and Brain Health in Older Women: Implications for Future Research in WHI Sciences

Andrew Petkus, Ph.D.
Assistant Professor of Clinical Neurology
University of Southern California

Email: petkus@usc.edu
Outline

• What is cognitive reserve (CR) and why is it important?
• How is CR measured?
 • Methodological challenges
 • Conceptual issues
• Estimating CR in WHIMS participants
 • Analytic approaches
 • Construct validity
• Implications for future studies (including WHI follow-up)
What is cognitive reserve?

Bennett et al., (2012) *Annals of Neurology*

High reserve:
- Lots of neuropathology
- Good cognitive performance

Low reserve:
- Little neuropathology
- Poor cognitive performance
Why is cognitive reserve important?

- Higher reserve = tolerate more neuropathology
- CR is fluid and changes across entire lifespan
- Potential targets for interventions

Stern (2012) *Lancet Neurology*
Measuring cognitive reserve is challenging

• Reliant on both measure of performance and measure of neuropathology
• Traditional method: Proxy approach
 • e.g. years of education, occupational attainment
• Problems with proxy approach
 • Cohort and geographical differences
 • Static measurement

Quantitative approach to estimate cognitive reserve

- Variance decomposition method (Reed et al., 2009)
- Strengths
 - Quantitative model of CR
 - Individual-specific
- Limitations of prior work
 - Local clinical sample
 - Only quantified “memory reserve”
 - General reserve?

Reed et al. (2009) *Brain*
Estimating cognitive reserve in WHIMS

• Can we identify general and cognitive domain-specific cognitive reserve in WHIMS?
• Can we further establish the construct validity of this approach?

Featured Article

General and domain-specific cognitive reserve, mild cognitive impairment, and dementia risk in older women

Andrew J. Petkusa,x, Susan M. Resnickb, Stephen R. Rappc,d, Mark A. Espelande, Margaret Gatzf, Keith F. Widamang, Xinhui Wanga, Diana Younanh, Ramon Casanovae, Helena Chuia, Ryan T. Barnarde, Sarah Gaussoine, Joseph S. Goveasi, Kathleen M. Haydend, Victor W. Hendersonj,k, Bonnie C. Sachsd,l, Santiago Saldanad, Aladdin H. Shadyabm, Sally A. Shumakerl, Jiu-Chiuan Chena,h
Sample:

- N = 972 women from WHISCA and WHIMS MRI-1
- 78.1 years old at the time of the cognitive assessment
- Cognitively intact at time of MRI and cognitive assessment
- All-cause MCI and dementia status via WHIMS participation
 - Data available through June 2018
Measures

• Cognitive measures (WHISCA)
 • Attention
 • Verbal memory
 • Figural memory
 • Visuospatial ability
 • Attention/working memory

• Structural MRI (WHIMS MRI-1)
 • Hippocampal volume
 • Total brain volume
 • Small vessel ischemic disease (SVID)

• Covariates
 • Demographics (baseline age, education, ethnicity, employment, geographic region of residence, income)
 • Lifestyle (smoking, alcohol use, exercise, hormone treatment ever)
 • Clinical (cholesterol, hypertension, cardiovascular disease, diabetes)
Variance decomposition approach to quantify reserve

Memory Reserve

Brain Factors
- Total brain volume
- Hippocampal volume
- SVID
- Intracranial volume

Demo Factors
- Education
- Minority status
- Age

Error
- 15% of the variance

Higher memory reserve = performance better than what we would expect given the combination of brain and demographic factors
Is there a “g” cognitive reserve factor?
Domain-specific and general reserve were estimable

- General reserve explained a modest to moderate amount of variance within each domain
 - 20% attention
 - 47% figural memory

Comparative fit index = .97
RMSEA = .056
Tucker Lewis Index = .93
Higher reserve = lower risk of MCI

<table>
<thead>
<tr>
<th>Reserve type</th>
<th>Separate model estimates</th>
<th>Joint model estimates</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HR</td>
<td>P</td>
</tr>
<tr>
<td>General</td>
<td>.07</td>
<td><.01</td>
</tr>
<tr>
<td>Verbal memory</td>
<td>.37</td>
<td><.01</td>
</tr>
<tr>
<td>Figural memory</td>
<td>.42</td>
<td><.01</td>
</tr>
<tr>
<td>Language</td>
<td>.42</td>
<td><.01</td>
</tr>
<tr>
<td>Spatial</td>
<td>.54</td>
<td><.01</td>
</tr>
<tr>
<td>Attention</td>
<td>.61</td>
<td><.01</td>
</tr>
</tbody>
</table>

- All reserve variables were scaled with mean = 0 and SD = 1
- All models adjust for demographic variables, structural brain neuropathology, lifestyle factors, and clinical variables
Higher reserve = lower risk of MCI

<table>
<thead>
<tr>
<th>Reserve type</th>
<th>Separate model estimates</th>
<th>Joint model estimates</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HR</td>
<td>P</td>
</tr>
<tr>
<td>General</td>
<td>.07</td>
<td><.01</td>
</tr>
<tr>
<td>Verbal memory</td>
<td>.37</td>
<td><.01</td>
</tr>
<tr>
<td>Figural memory</td>
<td>.42</td>
<td><.01</td>
</tr>
<tr>
<td>Language</td>
<td>.42</td>
<td><.01</td>
</tr>
<tr>
<td>Spatial</td>
<td>.54</td>
<td><.01</td>
</tr>
<tr>
<td>Attention</td>
<td>.61</td>
<td><.01</td>
</tr>
</tbody>
</table>

- All reserve variables were scaled with mean = 0 and SD = 1
- All models adjust for demographic variables, structural brain neuropathology, lifestyle factors, and clinical variables
Higher reserve = lower risk of MCI

<table>
<thead>
<tr>
<th>Reserve type</th>
<th>Separate model estimates</th>
<th>Joint model estimates</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HR</td>
<td>P</td>
</tr>
<tr>
<td>General</td>
<td>.07</td>
<td><.01</td>
</tr>
<tr>
<td>Verbal memory</td>
<td>.37</td>
<td><.01</td>
</tr>
<tr>
<td>Figural memory</td>
<td>.42</td>
<td><.01</td>
</tr>
<tr>
<td>Language</td>
<td>.42</td>
<td><.01</td>
</tr>
<tr>
<td>Spatial</td>
<td>.54</td>
<td><.01</td>
</tr>
<tr>
<td>Attention</td>
<td>.61</td>
<td><.01</td>
</tr>
</tbody>
</table>

- All reserve variables were scaled with mean = 0 and SD = 1
- All models adjust for demographic variables, structural brain neuropathology, lifestyle factors, and clinical variables
Higher reserve = lower risk of MCI

<table>
<thead>
<tr>
<th>Reserve type</th>
<th>Separate model estimates</th>
<th>Joint model estimates</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HR</td>
<td>P</td>
</tr>
<tr>
<td>General</td>
<td>.07</td>
<td><.01</td>
</tr>
<tr>
<td>Verbal memory</td>
<td>.37</td>
<td><.01</td>
</tr>
<tr>
<td>Figural memory</td>
<td>.42</td>
<td><.01</td>
</tr>
<tr>
<td>Language</td>
<td>.42</td>
<td><.01</td>
</tr>
<tr>
<td>Spatial</td>
<td>.54</td>
<td><.01</td>
</tr>
<tr>
<td>Attention</td>
<td>.61</td>
<td><.01</td>
</tr>
</tbody>
</table>

- All reserve variables were scaled with mean = 0 and SD = 1
- All models adjust for demographic variables, structural brain neuropathology, lifestyle factors, and clinical variables
Higher reserve = lower risk of dementia

<table>
<thead>
<tr>
<th>Reserve type</th>
<th>Separate model estimates</th>
<th>Joint model estimates</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HR</td>
<td>P</td>
</tr>
<tr>
<td>General</td>
<td>.28</td>
<td><.01</td>
</tr>
<tr>
<td>Verbal memory</td>
<td>.51</td>
<td><.01</td>
</tr>
<tr>
<td>Figural memory</td>
<td>.69</td>
<td>.01</td>
</tr>
<tr>
<td>Language</td>
<td>.58</td>
<td><.01</td>
</tr>
<tr>
<td>Spatial</td>
<td>.75</td>
<td>.03</td>
</tr>
<tr>
<td>Attention</td>
<td>.90</td>
<td>.45</td>
</tr>
</tbody>
</table>

- All reserve variables were scaled with mean = 0 and SD = 1
- All models adjust for demographic variables, structural brain neuropathology, lifestyle factors, and clinical variables
Higher reserve = lower risk of dementia

<table>
<thead>
<tr>
<th>Reserve type</th>
<th>Separate model estimates</th>
<th>Joint model estimates</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HR</td>
<td>P</td>
</tr>
<tr>
<td>General</td>
<td>.28</td>
<td><.01</td>
</tr>
<tr>
<td>Verbal memory</td>
<td>.51</td>
<td><.01</td>
</tr>
<tr>
<td>Figural memory</td>
<td>.69</td>
<td>.01</td>
</tr>
<tr>
<td>Language</td>
<td>.58</td>
<td><.01</td>
</tr>
<tr>
<td>Spatial</td>
<td>.75</td>
<td>.03</td>
</tr>
<tr>
<td>Attention</td>
<td>.90</td>
<td>.45</td>
</tr>
</tbody>
</table>

- All reserve variables were scaled with mean = 0 and SD = 1
- All models adjust for demographic variables, structural brain neuropathology, lifestyle factors, and clinical variables
Higher reserve = lower risk of dementia

<table>
<thead>
<tr>
<th>Reserve type</th>
<th>Separate model estimates</th>
<th>Joint model estimates</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HR</td>
<td>P</td>
</tr>
<tr>
<td>General</td>
<td>.28</td>
<td><.01</td>
</tr>
<tr>
<td>Verbal memory</td>
<td>.51</td>
<td><.01</td>
</tr>
<tr>
<td>Figural memory</td>
<td>.69</td>
<td>.01</td>
</tr>
<tr>
<td>Language</td>
<td>.58</td>
<td><.01</td>
</tr>
<tr>
<td>Spatial</td>
<td>.75</td>
<td>.03</td>
</tr>
<tr>
<td>Attention</td>
<td>.90</td>
<td>.45</td>
</tr>
</tbody>
</table>

- All reserve variables were scaled with mean = 0 and SD = 1
- All models adjust for demographic variables, structural brain neuropathology, lifestyle factors, and clinical variables
Higher reserve = lower risk of dementia

<table>
<thead>
<tr>
<th>Reserve type</th>
<th>Separate model estimates</th>
<th>Joint model estimates</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HR</td>
<td>P</td>
</tr>
<tr>
<td>General</td>
<td>.28</td>
<td><.01</td>
</tr>
<tr>
<td>Verbal memory</td>
<td>.51</td>
<td><.01</td>
</tr>
<tr>
<td>Figural memory</td>
<td>.69</td>
<td>.01</td>
</tr>
<tr>
<td>Language</td>
<td>.58</td>
<td><.01</td>
</tr>
<tr>
<td>Spatial</td>
<td>.75</td>
<td>.03</td>
</tr>
<tr>
<td>Attention</td>
<td>.90</td>
<td>.45</td>
</tr>
</tbody>
</table>

- All reserve variables were scaled with mean = 0 and SD = 1
- All models adjust for demographic variables, structural brain neuropathology, lifestyle factors, and clinical variables
Moderating effect of reserve on neuropathology

- Neuropathology measure: Alzheimer’s disease pattern similarity score (AD-PS) (Casanova et al., 2018)
 - Machine learning derived score of capturing AD-related grey matter atrophy
 - Higher score = greater AD-like pattern of brain tissue atrophy
- Aalen additive hazards model to examine the AD-PS x Reserve interaction
Good construct validity of reserve estimates

<table>
<thead>
<tr>
<th></th>
<th>AD-PS effect</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>General</td>
<td>10.1</td>
<td>31</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Verbal Memory</td>
<td>11.8</td>
<td>30.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Figural Memory</td>
<td>11</td>
<td>30.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Language</td>
<td>13.2</td>
<td>30.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Attention</td>
<td>18.1</td>
<td>22.3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

All displayed CR x AD-PS interactions p < .05

- AD-PS score and all reserve variables were scaled with mean = 0 and SD = 1
- All models adjust for demographic variables, lifestyle factors, and clinical variables
Summary of findings

• General and domain-specific reserve were identifiable in WHIMS with acceptable model fit
 • General reserve explained a modest amount of variance

• Construct validity of analytic approach
 • Higher reserve was mostly associated with lower risk of MCI and dementia
 • Heterogeneity between domains and across outcomes
 • Reserve moderated the adverse effect of increased neuropathology (AD-PS) on risk of cognitive impairment
What does this mean and implications?

• How do important lifestyle and clinical factors impact reserve?
 • Emotional factors (anxiety and depression)
 • Diet and physical exercise
 • Sleep
• Reserve as an intervention outcome?
• Cognitive reserve in the oldest old?
• Can we apply this approach to study other types of reserve and resilience?
 • Physical functioning reserve
 • Emotional resilience
Acknowledgments

Funding sources
• National Heart, Lung, and Blood Institute
• National Institute on Aging
 • R01AG033078
 • RF1AG054068
 • NO1-AG-1-2106
• University of Southern California Alzheimer’s Disease Research Center
 • P50A05142
• Wyeth Pharmaceuticals

Co-authors
• Diana Younan, Ph.D.
• Xinhui Wang, Ph.D.
• Keith Widaman, Ph.D.
• Susan Resnick, Ph.D.
• Stephen Rapp, Ph.D.
• Mark Espeland, Ph.D.
• Margaret Gatz, Ph.D.
• Ramon Casanova, Ph.D.
• Helena Chui, M.D.
• Ryan Barnard, M.S.
• Sarah Gaussoin, M.S.
• Joseph Goveas, M.D.
• Kathleen Hayden, Ph.D.
• Victor Henderson, M.D.
• Bonnie Sachs, Ph.D.
• Santiago Saldana, M.S.
• Aladdin Shadyab, Ph.D.
• Sally Shumaker, Ph.D.
• Jiu-Chiuan Chen, M.D., ScD

Contact Info
• Andrew Petkus
• Petkus@usc.edu
• Phone: 323-442-8050

Funding sources
• National Heart, Lung, and Blood Institute
• National Institute on Aging
 • R01AG033078
 • RF1AG054068
 • NO1-AG-1-2106
• University of Southern California Alzheimer’s Disease Research Center
 • P50A05142
• Wyeth Pharmaceuticals

Co-authors
• Diana Younan, Ph.D.
• Xinhui Wang, Ph.D.
• Keith Widaman, Ph.D.
• Susan Resnick, Ph.D.
• Stephen Rapp, Ph.D.
• Mark Espeland, Ph.D.
• Margaret Gatz, Ph.D.
• Ramon Casanova, Ph.D.
• Helena Chui, M.D.
• Ryan Barnard, M.S.
• Sarah Gaussoin, M.S.
• Joseph Goveas, M.D.
• Kathleen Hayden, Ph.D.
• Victor Henderson, M.D.
• Bonnie Sachs, Ph.D.
• Santiago Saldana, M.S.
• Aladdin Shadyab, Ph.D.
• Sally Shumaker, Ph.D.
• Jiu-Chiuan Chen, M.D., ScD

Contact Info
• Andrew Petkus
• Petkus@usc.edu
• Phone: 323-442-8050